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RAPID COMMUNICATION
AI-driven analysis establishes the single
base substitution signatures as
personalized prognostic predictors for
five-year survival of gastric cancer
AI-driven genetic engineering, as a burgeoning diagnostic
tool, can offer predictive information on the five-year
survival rate (FYSR) in the setup of a prognostic therapeutic
schedule. This approach provides the individuality and ac-
curacy of prognosis for FYSR of gastric cancer (GC). Unlike
traditional neoplasm staging criteria, our technique ensures
accuracy and individuality without relying on statistical
data and empirical study. Here, we designed a gene mu-
tation analysis algorithm (cumulative contribution abun-
dance, CCA, Supplementary Material 1.1) to drive a single
base substitution (SBS) signature to score GC prognosis
because the algorithm can better represent the relation-
ship between genes and mutational signatures. We found a
new prognostic survival factor (SBS44) of GC and verified
that SBS18 can also be utilized in this capacity. Then, a GC
FYSR predictive AI model was constructed that combined
the SBS44 and SBS18 (SBS44&18) signatures as character-
istic variables and obtained high accuracy (AUC: 0.9194,
95% CI: 0.8357e1). Our results suggest that this technique is
beneficial for accurate prognostic assessment and provide a
new idea for clinical stratified treatment.

First, the somatic mutation profiles of 462 GC patients
were pooled, which were taken from previous genomic
studies (Table S1, 2; Supplementary Material 2.2). Infor-
mation on a total of 11, 570, 459 mutations was collected,
including 9,016,437 single-base mutations and 2,554,022
insertion and deletion mutations. For those GC samples,
approximately 7% (31/462) were hypermutated (Fig. S1).
They were mostly found in the MSI status (microsatellite
instability), which was represented in TCGA’s MSI subtype,
and the intestinal type and survival status (Fig. A2 of Sup-
plementary Material 3.2).
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SBS44* and SBS18* as important mutational
signatures in GC

To further understand the mutational process in GC, we
delineated mutational signatures from the genome mutation
map. The predominant mutations were C > T (30.14%) and
T > C (23.44%) when we first tallied the 96 single nucleotide
variations that may exist in the trinucleotide context in each
GC sample (Fig. 1A). Subsequently, using the COSMIC1

feature nomenclature, we categorized 10 mutational signa-
tures from the 462 GC genome data that had various levels of
mutagenic activity (Fig. S2, 3). These 10 signatures exhibited
high cosine similarity to the COSMIC mutation signatures
SBS18, SBS2, SBS17a, SBS28, SBS1, SBS17b, SBS58, SBS52,
SBS3, and SBS44 on COSMIC (cosine coefficients were 0.97 for
SBS18*, 0.83 for SBS2*, 0.94 for SBS17a*, 0.92 for SBS28*, 0.98
for SBS1*, 0.97 for SBS17b*, 0.91 for SBS58*, 0.82 for SBS52*,
0.82 for SBS3*, and 0.92 for SBS44*; Fig. S3, asterisks indicate
the signatures analyzed by RNMF2 analysis in this work). This
shows that these characteristics are important signatures of
GC, such as SBS18*, which is in accordance with previous
findings.

To confirm these potentially important signatures in GC,
we performed independent feature extraction analysis on
each dataset and found that some signatures were also pre-
sent in these independent cohorts, such as SBS44* (cosine
coefficient was 0.94 of GC168 cohort with 168 cases, 0.92 of
HK100 cohort with 100 cases, 0.9 of ICGC cohort with 123
cases, 0.68 of Guo Y.A. cohort with 31 cases, 0.86 of Guo Y.A.
cohort with 40 cases; Fig. 1B), which enriched a large number
of C > T and T > C type mutations and was linked to the
deficiency in DNA mismatch repair. Then, we conducted an
SBS44* scanthroughout theentiregenomeof these tumorsand
discovered that at least one-third of the samples contributed
more than 6% to this signature in each dataset (Fig. 1C).
behalf of KeAi Communications Co., Ltd. This is an open access
by/4.0/).
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Figure 1 SBS44* and prognosis of SBSs in gastric cancer. (A) Lego plot representation of mutation patterns in 462 GC cases. The
inset pie chart shows the proportion of six categories of mutation patterns. (B) SBS44* is depicted using a 96-substitution classi-
fication defined by the substitution type and sequence context immediately 50 and 30 to the mutated base in different datasets. The
cosine similarity between SBS44* of each dataset and COSMIC SBS44 is calculated. (C) Distribution of cases with SBS44* activity (top)
and percentage of cases with SBS44* activity in the different datasets (bottom). (D) KaplaneMeier survival analysis stratified by
mutational exposure of SBS44* status. (E) KaplaneMeier survival analysis stratified by mutational exposure of SBS18* status. SBSs
classify five-year survival in gastric cancer. (FeI) Classification of the test set consisted of G2 (blue) and G1 (red) from the GC168
and ICGC123 cohorts, respectively. The receiver operating curves (ROCs) for those datasets are provided.
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Interestingly, this signature was very active in hypermutated
samples (Fig. A2 of Supplementary Material 3.2, 83.87% vs.
39.21% of cases, P < 0.00001, Fisher’s test with "two-sided").
Linear correlation analysis revealed that the number of mu-
tations in the sample was strongly related to the number of
mutations that contributed to SBS44* (Spearman R Z 0.73,
P< 0.001), aswell as themutation number of samples and the
mutational exposure of samples to SBS44* (Spearman
RZ 0.001) 0.19, P < 0.001; Fig. S4A).

SBS44* and SBS18* as prognostic factors for
survival in gastric cancer

To explore the association of these mutational signatures
with prognosis, we performed a KaplaneMeier survival
analysis. Interestingly, we found that in tumors with
mutational exposure of SBS44*, more than 20% was signifi-
cantly associated with a better survival outcome in this
cohort (Fig. 1D). In contrast, those cases with more than
20% mutational exposure of SBS18* showed a significantly
poor prognosis (Fig. 1E), which has been previously re-
ported.3 Unfortunately, the SBS17b* feature is not a prog-
nostic factor for survival in GC (Fig. S5), which also verifies
the above assumptions.

The prediction model of FYSR for gastric
cancer

To further investigate the relationship between genes and
two (SBS18* and SBS44*) prognosis-related mutational



Rapid Communication 3
signatures for prognosis evaluation, we used a random
forest algorithm4 in machine learning to screen prognostic
targets for GC based on the CCA model.

According to the follow-up time and survival status,
462 GC samples were divided into four groups: G1 (38
samples with a survival period of >5 years), G2 (115 sam-
ples with a survival period of <5 years and death), G3 (135
samples with a survival period of <5 years but survival), and
G4 (174 samples without survival information) (see Sup-
plementary Materials 2.6 for details).

Next, we randomly selected 95% of cases from the GC168
cohort to build a random forest training model and
screened a better model with a training AUC of more than
0.9 (Fig. S6A). Based on this, 19 predictive biomarkers were
selected (Table S5) with a frequency greater than 50% in
the total number of tests (Fig. S6B). Notably, these bio-
markers involved 14 genes, namely, TP53, APC, PIK3CA,
NOTCH2, CSMD3, CDH11, ATRX, KMT2C, MUC16, SETD2,
SRGAP3, SETBP1, NIN, and DCC, of which at least 50% were
involved in the occurrence and development of GC.5

Meanwhile, we found that CCA of MUC16 mutation on
SBS44* or SBS18* also played an important role in the pre-
diction model (Fig. S6B, C). The model was used to predict
all cases in the GC168 cohort and obtained a good result
(Fig. 1F, AUC: 0.9194, 95% CI: 0.8357e1). We then used the
dataset from the ICGC123 cohort to evaluate the model and
still reached a good level (Fig. 1G, AUC: 0.857, 95% CI:
0.7148e0.9992). Furthermore, to test the adaptability of
the model, we used the mutational signatures obtained by
the independent decomposition of the GC168 and ICGC123
datasets to construct a test dataset for analysis. We found
that the model obtained approximately 90% accuracy under
the GC168 cohort data (Fig. 1H, AUC: 0.894, 95% CI:
0.797e0.991), and the AUC predicted value calculated from
the ICGC123 cohort was higher than 0.8 (Fig. 1I, AUC:
0.8153, 95% CI: 0.6326e0.9981).

For a more comprehensive analysis, we constructed in-
dependent prediction models for the FYSR of SBS44 and
SBS18 using the same method. The AUC of SBS18 was 0.87
and 0.80 for the GC168 and ICGC123 datasets (Fig. S7A),
respectively. The AUCs of SBS44 were 0.86 and 0.82 for the
GC168 and ICGC123 datasets (Fig. S7B), respectively, and
all were lower than those of SBS44&18. Additionally, we
performed the same analysis on clinical information prog-
nostic factors, such as MSI status, Lauren types, and clinical
stages (Supplementary Material 3.4) that we discovered.
The results showed that the predictive effect was not ideal,
with an AUC of less than 0.8 (Fig. S8A, B), and the final
predictive biomarkers used were Lauren types and clinical
stages (Fig. S8C). In addition, when SBS18 and SBS44 were
combined with these clinical information prognostic factors
to construct the predictive models for assessment, it was
found that the effects were not as good as those of
SBS44&18 alone (Fig. S9).

In summary, the prediction model of FYSR constructed
based on the relationship between genes and prognosis-
related mutational signatures can obtain better prognosis
evaluation results and has a certain degree of auxiliary value
for clinical medical treatment. Additionally, it should be
feasible to advance other tumors in accordance with the
model scheme in this work if the clinical information for those
tumors is complete (see supplementary material for details).
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